Tag Archives: ALM

Open Services for Lifecycle Collaboration

I can honestly say that I when I wrote my post about ALM and middleware, I hadn’t heard about the Open Services for Lifecycle Collaboration initiative. But it is exactly the kind of thing I had in mind. These guys are working on the definition of a minimum (but expandable) set of features and functions that allow easy integration between the various tools, which can usually be found in an organization. To my knowledge no products exist yet, but I really like the idea and approach.

Version Control Systems and other Repositories

Recently, a few colleagues and I had a very interesting discussion about what should go into a Version Control System (VCS) and what should not. In particular we were arguing as to whether things like documents or project plans should go in. Here are a few things that I came up with in that context.

I guess the usage of VCS (and other repositories) somehow comes down to a few general desires (aka use-cases):

  • Single source of truth
  • History/time machine
  • Traceability
  • Collaboration
  • Automation of builds etc.

In today’s world with its many different repositories you can either go for a mix (best-of-breed) or the lowest common denominator which is usually the VCS. So what’s stopping people from doing it properly (=best of breed)?

  • Lack of conceptual understanding:
    • Most people involved in those kinds of discussion usually come from a (Java) development background. So there is a “natural” tendency to think VCS. What this leaves out is that other repositories, which are often DB-based, offer additional capabilities. In particular there are all sorts of cross checks and other constraints which are being enforced. Also, given their underlying architecture, they are usually easier to integrate with in therms of process-driven approaches.
    • Non-technical folks are mostly used to do versioning-by-filename and require education to see the need for more.
  • Lack of repository integration: Interdependent artefacts spread over multiple repositories require interaction, esp. synchronisation. Unless some kind of standard has emerged, it is a tedious task to do custom development for these kinds of interfaces. Interestingly, this goes back to my post about ALM needing middleware.
  • Different repositories have clients working fundamentally differently, both in terms of UI and underlying workflow (the latter is less obvious but far-reaching in consequence). Trying to understand all this is really hard. BTW: This already starts with different VCS! As an example just compare SVN, TFS and Git (complexity increasing in that order, too) and have “fun”.
  • Lack of process: Multiple repositories asking for interaction between themselves also means that there is, at least implicitly, a process behind all this. Admittedly, there is also a process behind a VCS-only approach, but it’s less obvious and its evolvement often ad-hoc in nature. With multiple repositories a more coordinated approach is required to the process development, also because often this means crossing organisational boundaries.

Overall, this means that there is considerable work to be done in this area. I will continue to post my ideas here and look forward to your comments!

ALM and ERP Software: Middleware needed for both

The idea to write this post was triggered when I read an article called “Choosing Agile-true application lifecycle management (ALM)” and in particular by it saying that many ALM tools come as a package that covers multiple processes in the lifecycle of an application. Although strictly speaking this is not a “we-cover-everything” approach, it still strongly reminds me of the take that ERP software has made initially. Its promise, put simply, was that an entire organization with all its activities (to avoid the term process here) could be represented without the need to develop custom software. This was a huge step forward and some companies made and still make a lot of money with it.

Of course, the reality is a bit more complex and so organizations that embrace ERP software have to choose between two options: either change the software to fit the organization, or change the organization to fit the software. This is not meant to be ERP bashing, it simply underlines the point that the one-size-fits-all approach has limits. And a direct consequence of this is that although the implementation effort can be reduced considerably, there is still a lot of work to be done. This is usually referred to as customizing. The more effort needs to go there, the more the ERP software is changing into something individual. So the distinction between a COTS (commercial off-the-shelf) software, the ERP, and something developed individually gets blurred. This can reduce the advantages of ERP, and especially the cost advantage, to an extent.

And another aspect is crucial here, too. An ERP system, pretty much by definition, is a commodity in the sense that the activity it supports is nothing that gives the organization a competitive advantage. In today’s times some of the key influencing factors for the latter are time-to-market and, related to that, agility and flexibility. ERP systems usually have multiple, tightly integrated components and a complex data model to support all this. So every change needs careful analysis so that it doesn’t break something else. No agility, no flexibility, no short time-to-market. And in addition all organizations I have come across so far, need things that their ERP does not provide. So there is always a strong requirement to integrate the ERP world with the rest, be it other systems (incl .mainframe) or trading partners. Middleware vendors have addressed this need for many years.

And now I am finally coming back to my initial point. In my view ALM tools do usually cover one or several aspects of the whole thing but never everything. And if they do, nobody these days starts on a green field. So also here we need to embrace reality and accept that something like ALM middleware is required.

Tooling for Agile and Traditional Development Methodologies

A hot topic of the last few years has been the debate as to whether traditional (aka waterfall-like) methodologies or agile ones (XP, SCRUM, etc.) deliver better results. Much of the discussion that I am aware of has focused on things like

  • Which approach fits the organization?
  • How strategic or tactical (both terms usually go undefined) is the project and how does this affect the suitability of one approach over the other?
  • What legal and compliance requirements must be taken into account?
  • How large and distributed is the development team?

This is all very important stuff and thinking about it is vital. Interestingly, though, what has largely been ignored, at least in the articles I have come across, is the tooling aspect. A methodology without proper tool support has relatively little practical value. Well, of course the tools exist. But can they effectively be used in the project? In my experience this is mostly not the case, when we speak about the “usual suspects” for requirements and test management. The reason for that is simply money. It comes in many incarnations:

  • Few organizations have enterprise licenses for the respective tools and normally no budget is available for buying extra licenses for the project. The reason for the latter is either that this part of the budget was rejected, or that it was forgotten altogether.
  • Even if people are willing to invest for the project, here comes the purchasing process, which in itself can be quite prohibitive.
  • If there are licenses, most of these comprehensive tools have a steep learning curve (no blame meant, this is a complicated subject).
  • No project manager, unless career-wise suicidal, is willing to have his budget pay for people getting to know this software.
  • Even if there was budget (in terms of cash-flow), it takes time and often more than one project to obtain proficiency with the tools.

Let’s be clear, this is not product or methodology bashing. It is simply my personal, 100% subjective experience from many projects.

Now let’s compare this with the situation for Version Control Systems (VCS). Here the situation looks quite different. Products like Subversion (SVN) are well-established and widely used. Their value is not questioned and every non-trivial project uses them. Why are things so different here and since when? (The second part of the question is very important.) VCSes have been around for many years (RCS, CVS and many commercial ones) but none of them really gained the acceptance that SVN has today. I cannot present a scientific study here but my gut feeling is that the following points were crucial for this:

  • Freely available
  • Very simple to use, compared to other VCS. This causes issues for more advanced use-cases, especially merging, but allows for a fast start. And this is certainly better than avoiding a VCS in the first place.
  • Good tool suppport (e.g. TortoiseSVN for Windows)

Many people started using SVN under the covers for the aforementioned reasons and from there it gradually made its way into the official corporate arena. It is now widely accepted as the standard. A similar pattern can be observed for unit-testing (as opposed to full-blown integrating and user acceptance testing):  Many people use JUnit or something comparable with huge success. Or look at Continuous Integration with Hudson. Cruise Control was around quite a bit longer but its configuration was perceived to be cumbersome. And on top of its ease-of-use Hudson added something else: extensibility via plug-ins. The Hudson guys accepted upfront that people would want to do more than what the core product could deliver.

All these tools were designed bottom-up coming from people who knew exactly what they needed. And by “sheer coincidence” much of this stuff is what’s needed for an agile approach. My hypothesis is that more and more of these tools (narrow scope, free, extensible) will be coming and moving up the value chain. A good example is the Framework for Integrated Test that addresses user acceptance tests. As this happens and integration of the various tools at different levels progresses, the different methodologies will also converge.